Copied to
clipboard

G = C42.299C23order 128 = 27

160th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.299C23, C4.1722+ 1+4, C89D443C2, C86D442C2, C4⋊C853C22, (C4×C8)⋊62C22, C22≀C2.7C4, C4⋊D4.26C4, C24.89(C2×C4), C8⋊C433C22, C22⋊Q8.26C4, C22⋊C847C22, (C2×C8).436C23, (C2×C4).675C24, (C22×C8)⋊57C22, (C4×D4).63C22, C24.4C438C2, C23.42(C22×C4), C2.30(Q8○M4(2)), (C2×M4(2))⋊49C22, C22.199(C23×C4), (C23×C4).534C22, (C22×C4).942C23, C22.D4.10C4, C42⋊C2.87C22, C42.7C2228C2, C22.19C24.14C2, C2.49(C22.11C24), C4⋊C4.119(C2×C4), (C2×D4).143(C2×C4), C22⋊C4.20(C2×C4), (C2×C4).81(C22×C4), (C2×Q8).124(C2×C4), (C22×C8)⋊C234C2, (C22×C4).355(C2×C4), (C2×C4○D4).95C22, SmallGroup(128,1710)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.299C23
C1C2C4C2×C4C22×C4C23×C4C22.19C24 — C42.299C23
C1C22 — C42.299C23
C1C2×C4 — C42.299C23
C1C2C2C2×C4 — C42.299C23

Generators and relations for C42.299C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, dcd=ece=a2b2c, ede=b2d >

Subgroups: 348 in 201 conjugacy classes, 124 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22×C8, C2×M4(2), C23×C4, C2×C4○D4, C24.4C4, (C22×C8)⋊C2, C42.7C22, C89D4, C86D4, C22.19C24, C42.299C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, 2+ 1+4, C22.11C24, Q8○M4(2), C42.299C23

Smallest permutation representation of C42.299C23
On 32 points
Generators in S32
(1 23 27 15)(2 16 28 24)(3 17 29 9)(4 10 30 18)(5 19 31 11)(6 12 32 20)(7 21 25 13)(8 14 26 22)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15)(2 20)(3 9)(4 22)(5 11)(6 24)(7 13)(8 18)(10 26)(12 28)(14 30)(16 32)(17 29)(19 31)(21 25)(23 27)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(10 22)(12 24)(14 18)(16 20)(25 29)(27 31)

G:=sub<Sym(32)| (1,23,27,15)(2,16,28,24)(3,17,29,9)(4,10,30,18)(5,19,31,11)(6,12,32,20)(7,21,25,13)(8,14,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,20)(3,9)(4,22)(5,11)(6,24)(7,13)(8,18)(10,26)(12,28)(14,30)(16,32)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(10,22)(12,24)(14,18)(16,20)(25,29)(27,31)>;

G:=Group( (1,23,27,15)(2,16,28,24)(3,17,29,9)(4,10,30,18)(5,19,31,11)(6,12,32,20)(7,21,25,13)(8,14,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,20)(3,9)(4,22)(5,11)(6,24)(7,13)(8,18)(10,26)(12,28)(14,30)(16,32)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(10,22)(12,24)(14,18)(16,20)(25,29)(27,31) );

G=PermutationGroup([[(1,23,27,15),(2,16,28,24),(3,17,29,9),(4,10,30,18),(5,19,31,11),(6,12,32,20),(7,21,25,13),(8,14,26,22)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15),(2,20),(3,9),(4,22),(5,11),(6,24),(7,13),(8,18),(10,26),(12,28),(14,30),(16,32),(17,29),(19,31),(21,25),(23,27)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(10,22),(12,24),(14,18),(16,20),(25,29),(27,31)]])

38 conjugacy classes

class 1 2A2B2C2D···2H4A4B4C4D4E···4M8A···8P
order12222···244444···48···8
size11114···411114···44···4

38 irreducible representations

dim1111111111144
type++++++++
imageC1C2C2C2C2C2C2C4C4C4C42+ 1+4Q8○M4(2)
kernelC42.299C23C24.4C4(C22×C8)⋊C2C42.7C22C89D4C86D4C22.19C24C22≀C2C4⋊D4C22⋊Q8C22.D4C4C2
# reps1222441444424

Matrix representation of C42.299C23 in GL8(𝔽17)

115000000
016000000
016010000
016100000
00000100
000016000
000000016
00000010
,
40000000
04000000
00400000
00040000
000013000
000001300
000000130
000000013
,
101500000
001610000
701600000
741600000
00000010
00000001
000013000
000001300
,
115000000
016000000
1160160000
1161600000
00000100
00001000
00000001
00000010
,
160000000
161000000
160100000
000160000
000016000
00000100
000000160
00000001

G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13],[1,0,7,7,0,0,0,0,0,0,0,4,0,0,0,0,15,16,16,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,1,1,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[16,16,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1] >;

C42.299C23 in GAP, Magma, Sage, TeX

C_4^2._{299}C_2^3
% in TeX

G:=Group("C4^2.299C2^3");
// GroupNames label

G:=SmallGroup(128,1710);
// by ID

G=gap.SmallGroup(128,1710);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,891,675,1018,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations

׿
×
𝔽