p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.299C23, C4.1722+ 1+4, C8⋊9D4⋊43C2, C8⋊6D4⋊42C2, C4⋊C8⋊53C22, (C4×C8)⋊62C22, C22≀C2.7C4, C4⋊D4.26C4, C24.89(C2×C4), C8⋊C4⋊33C22, C22⋊Q8.26C4, C22⋊C8⋊47C22, (C2×C8).436C23, (C2×C4).675C24, (C22×C8)⋊57C22, (C4×D4).63C22, C24.4C4⋊38C2, C23.42(C22×C4), C2.30(Q8○M4(2)), (C2×M4(2))⋊49C22, C22.199(C23×C4), (C23×C4).534C22, (C22×C4).942C23, C22.D4.10C4, C42⋊C2.87C22, C42.7C22⋊28C2, C22.19C24.14C2, C2.49(C22.11C24), C4⋊C4.119(C2×C4), (C2×D4).143(C2×C4), C22⋊C4.20(C2×C4), (C2×C4).81(C22×C4), (C2×Q8).124(C2×C4), (C22×C8)⋊C2⋊34C2, (C22×C4).355(C2×C4), (C2×C4○D4).95C22, SmallGroup(128,1710)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.299C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, dcd=ece=a2b2c, ede=b2d >
Subgroups: 348 in 201 conjugacy classes, 124 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C22×C8, C2×M4(2), C23×C4, C2×C4○D4, C24.4C4, (C22×C8)⋊C2, C42.7C22, C8⋊9D4, C8⋊6D4, C22.19C24, C42.299C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, 2+ 1+4, C22.11C24, Q8○M4(2), C42.299C23
(1 23 27 15)(2 16 28 24)(3 17 29 9)(4 10 30 18)(5 19 31 11)(6 12 32 20)(7 21 25 13)(8 14 26 22)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15)(2 20)(3 9)(4 22)(5 11)(6 24)(7 13)(8 18)(10 26)(12 28)(14 30)(16 32)(17 29)(19 31)(21 25)(23 27)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(10 22)(12 24)(14 18)(16 20)(25 29)(27 31)
G:=sub<Sym(32)| (1,23,27,15)(2,16,28,24)(3,17,29,9)(4,10,30,18)(5,19,31,11)(6,12,32,20)(7,21,25,13)(8,14,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,20)(3,9)(4,22)(5,11)(6,24)(7,13)(8,18)(10,26)(12,28)(14,30)(16,32)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(10,22)(12,24)(14,18)(16,20)(25,29)(27,31)>;
G:=Group( (1,23,27,15)(2,16,28,24)(3,17,29,9)(4,10,30,18)(5,19,31,11)(6,12,32,20)(7,21,25,13)(8,14,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,20)(3,9)(4,22)(5,11)(6,24)(7,13)(8,18)(10,26)(12,28)(14,30)(16,32)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(10,22)(12,24)(14,18)(16,20)(25,29)(27,31) );
G=PermutationGroup([[(1,23,27,15),(2,16,28,24),(3,17,29,9),(4,10,30,18),(5,19,31,11),(6,12,32,20),(7,21,25,13),(8,14,26,22)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15),(2,20),(3,9),(4,22),(5,11),(6,24),(7,13),(8,18),(10,26),(12,28),(14,30),(16,32),(17,29),(19,31),(21,25),(23,27)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(10,22),(12,24),(14,18),(16,20),(25,29),(27,31)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4M | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | 2+ 1+4 | Q8○M4(2) |
kernel | C42.299C23 | C24.4C4 | (C22×C8)⋊C2 | C42.7C22 | C8⋊9D4 | C8⋊6D4 | C22.19C24 | C22≀C2 | C4⋊D4 | C22⋊Q8 | C22.D4 | C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 4 | 4 | 4 | 4 | 2 | 4 |
Matrix representation of C42.299C23 ►in GL8(𝔽17)
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 16 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
1 | 0 | 15 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 0 |
7 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
7 | 4 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 |
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 16 | 0 | 0 | 0 | 0 |
1 | 16 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13],[1,0,7,7,0,0,0,0,0,0,0,4,0,0,0,0,15,16,16,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,1,1,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[16,16,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1] >;
C42.299C23 in GAP, Magma, Sage, TeX
C_4^2._{299}C_2^3
% in TeX
G:=Group("C4^2.299C2^3");
// GroupNames label
G:=SmallGroup(128,1710);
// by ID
G=gap.SmallGroup(128,1710);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,891,675,1018,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations